深度解析:从 DeepSeek 到 Gemini,如何构建防御“模型蒸馏”的铜墙铁壁?
谷歌Gemini遭模型蒸馏攻击曝光后,winzheng Research Lab最新报告剖析DeepSeek事件,揭示攻击链条全貌。从API异常调用到混合训练路径,事件铁证如山。报告提出API智能风控、输出水印及模型对抗训练的纵深防御体系,并给出企业三步走实施指南。面对低成本克隆威胁,AI企业如何守住护城河?本文深度解析反蒸馏策略,助你构建铜墙铁壁。(128字)
真机实测,数据说话。我们用严谨的方法论评测AI大模型、智能硬件与前沿技术,只为给你最客观的参考。
谷歌Gemini遭模型蒸馏攻击曝光后,winzheng Research Lab最新报告剖析DeepSeek事件,揭示攻击链条全貌。从API异常调用到混合训练路径,事件铁证如山。报告提出API智能风控、输出水印及模型对抗训练的纵深防御体系,并给出企业三步走实施指南。面对低成本克隆威胁,AI企业如何守住护城河?本文深度解析反蒸馏策略,助你构建铜墙铁壁。(128字)
DeepSeek Inference 5.1 是DeepSeek最新发布的推理引擎,在 MLCommons 推理基准中表现出色。该版本针对大模型高效推理进行了优化,支持 SGLang 等框架,显著提升了吞吐量和延迟性能。测试数据显示,在 Llama 3.1 405B 等模型上,DeepSeek Inference 5.1 的性能超越了 vLLM 和 TensorRT-LLM 等竞品,Elo Rating 排名前列。文章详解其关键特性、基准结果及实际部署建议,助力开发者选择最佳推理方案。(128字)
GB200 NVL72作为深度学习最强硬件之一,本文分享SGLang团队在上篇博客基础上,对DeepSeek V3/R1推理性能的进一步优化,包括FP8 attention、NVFP4 MoE、大规模专家并行(EP)、预填充-解码分离等技术。在FP8 attention和NVFP4 MoE下,SGLang实现每GPU预填充26,156 tokens/s、解码13,386 tokens/s(2000 token输入),较H100提升3.8倍和4.8倍。即使采用传统BF16 attention和FP8 MoE,也达18,471和9,087 tokens/s。优化涵盖低精度计算、更快内核集成、计算通信重叠等,精度损失微乎其微。实验验证了端到端性能大幅提升,并分析了内核级加速效果。(128字)